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ABSTRACT

Trust is a crucial basis for interactions among parties in large, open
systems. Yet, the scale and dynamism of such systems make it
infeasible for each party to have a direct basis for trusting another
party. For this reason, the participants in an open system must share
information about trust. However, they should not automatically
trust such shared information. This paper studies the problem of
propagating trust in multiagent systems. It describes a new alge-
braic approach, shows some theoretical properties of it, and empir-
ically evaluates it on two social network datasets. This evaluation
incorporates a new methodology that involves dealing with opin-
ions in an evidential setting.

1. INTRODUCTION
We consider autonomous parties such as people or businesses

that interact with each other in modern information environments.
Ultimately, whenever a party interacts with another, the two parties
must trust each other sufficiently to be willing to carry out the de-
sired interaction. In a general sense, a party Alice trusts another
party Bob because Bob will provide what Alice expects [3].

Importantly, trust between a trusting and trusted party must have
a basis in some direct relationship (and with respect to a relevant
purpose). The relationship in question could be based on or arise
from a commercial or social transaction, or through mere partici-
pation in common groups, or through an assessment of certain at-
tributes that apply to each party. No matter what exact form the
direct relationship takes, the scale of real systems is such that a
party would feature in direct relationships with a relatively small
number of others. Consequently, it would have reason to trust or
distrust a relatively small subset of the parties with whom it might
consider interacting.

The natural response to the above challenge is to enable the par-
ties to share information with each other about whether and how
much to trust others. It stands to reason, however, that trust need
not propagate. For example, Alice may trust Bob and Bob may
trust Charlie (and Alice may know this fact), but it may not be the
case that Alice trusts Charlie. Although the above holds in general,
in many practical settings, the propagation of trust is a reasonable
description of what actually transpires. In real life, individuals and
businesses give referrals and rely enormously on referrals to deter-
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mine with whom to interact [4]. Accordingly, we confine ourselves
to the practical situations that do lend themselves to the propaga-
tion of trust. Such settings arise naturally whenever similarity in
the needs of the various parties is a sufficient reason for the exis-
tence of trust. For example, to anticipate one of the datasets we
study, if Alice trusts Bob’s opinions about movies and Bob trusts
Charlie’s opinions about movies, then it stands to reason that Alice
might trust Charlie’s opinions about movies.

Trust can be naturally multidimensional, including various as-
pects of competence and intent. The approach we describe below
can accommodate multidimensionality but, for the sake of simplic-
ity, we consider a single dimension and assume that it incorporates
the aspect of trust in the sense of judging others and giving valuable
referrals. Besides its simplicity, an important reason for this lim-
ited model is that the independently existing datasets upon which
we empirically evaluate our approach do not lend themselves to
multidimensional assessments.

Further, we generalize the conceptualization of evidence here to
mean not necessarily empirical but any basis of positive and neg-
ative opinions, respectively. This is important for our application
domain of social networks, where the base relationships arise from
opinions (even prejudices), not from empirical evidence.

There are three contributions in this paper. First, we define three
operators, aggregation, concatenation, and selection, for efficiently
and accurately propagating trust in social networks. Second, we
prove some useful formal properties of the operators. Third, in
order to evaluate our approach, we present a transformation from
subjective opinions to (presumed objective) evidential ratings.

2. BACKGROUND
From the standpoint of trust, a system of interacting agents is

naturally modeled as a weighted directed graph, each of whose ver-
tices correspond to an agent and each of whose edges corresponds
to a direct relationship of trust from the agent at the source vertex to
the agent at the target vertex, the weight on the edge being a mea-
sure of the trust placed. Conventionally, this weight is a scalar from
the real interval [0, 1]. A path in such a graph thus corresponds to
propagated trust and a weight on a path can be induced that reflects
the measure of the trust propagated.

The earliest works on the propagation of trust assume that the
propagation of trust along a path is multiplicative (e.g., the weighted
average approach in [5]). For example, if Alice trusts Bob at 0.8
and Bob trusts Charlie at 0.7, then Alice is inferred as trusting Char-
lie at 0.8 × 0.7 = 0.56. This reflects the natural intuition that the
measure of trust placed over a path falls as a path gets longer. (Our
more nuanced approach captures this intuition as well.)
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How trust is aggregated from more than one path is more chal-
lenging. An intuition is that the contributions of independent paths
be added in some way, because they would reinforce each other.
However, a simple addition of the path weights is generally inap-
propriate, because it would lead to double counting, and yield trust
ratings greater than 1.0 unless somehow corrected.

Another challenge to trust propagation is the well-known rumor
problem. What we would like to avoid are situations such as where
Alice trusts Charlie because Bob told her he does and Bob trusts
Charlie because Alice told him she does. We would like to make
sure that there are no cycles in the flow of information. This is the
reason that several trust propagation approaches represent only di-
rect trust information in the graph models and use that information
as the base for all their calculations of trust.

A common feature of most of the popular approaches for trust is
that they measure the extent of trust via a scalar [6, 10, 13, 14, 24].
Although the scalar representation is simple, it is not well-suited to
the propagation of trust. Following Jøsang, we model one party’s
trust in another party in terms of a triple consisting of three scalars
corresponding to belief (i.e., positive trust or belief about trust) b,
disbelief (i.e., distrust or negative trust or belief of distrust) d, and
uncertainty u. However, each triple 〈b, d, u〉 satisfies the constraint
that b + d + u = 1—hence, this representation supports not three
but two degrees of freedom. The additional degree of freedom com-
pared to the traditional one-scalar representation helps us represent
the certainty of information. In Jøsang’s approach, the above triple
representation is derived from a pair of numbers representing the
positive evidence r and the negative evidence s, respectively, where
r + s > 0. The 〈b, d, u〉 and 〈r, s〉 representations—called belief
and evidence spaces, respectively—can be mapped to each other
without loss of information. In notation, 〈b, d, u〉 = Z(〈r, s〉) and
〈r, s〉 = Z−1(〈b, d, u〉), where Z is a suitable mapping [19]. An
important property of our approach is that the expected probability
of a good outcome α = r

r+s
= b

b+d
.

Wang and Singh (W&S) [18, 19] adopt Jøsang’s framework [8],
but deviate significantly from his approach. W&S base certainty on
the strength, and not just the amount of evidence. First, for a given
amount of evidence, increasing unanimity yields higher certainty.
Second, holding the extent of the unanimity (or conflict) constant,
an increasing amount of evidence yields increasing certainty.

Certainty provides a principled basis for propagating trust and
distrust. For example, suppose Alice trusts Bob highly. Then,
if Bob trusts Charlie highly, Alice would trust Charlie almost as
highly. And, if Bob distrusts Charlie highly, Alice would distrust
Charlie almost as highly as Bob does. In other words, even the
propagation of distrust relies upon trust in the propagator. By con-
trast, if Alice distrusts Bob highly, then whether Bob trusts or dis-
trusts Charlie, Alice would be uncertain about Charlie. It is impos-
sible to capture the above nuances with a scalar representation.

3. APPROACH
Building on the above model of a social network as a graph, we

propose a model called CertProp that handles the propagation of
trust. CertProp is based on three operators. Concatenation or ⊗
deals with the propagation of trust ratings along a path. Selection
or � chooses the most trustworthy path to each witness, whereas
aggregation or ⊕ deals with the combination of trust ratings from
paths between the same source and target. The aggregation opera-
tor is due to Jøsang [8, 18]; the others are new here.

3.1 New Operator: Concatenation
Suppose Alice learns about Charlie from Bob. The extent of

trust that Alice places in Charlie would be Bob’s trust in Charlie

discounted by Alice’s trust in Bob. Below, we use Mi to refer to a
belief report of the form 〈b, d, u〉.

Let agent A place trust M1 = 〈b1, d1, u1〉 in agent B’s refer-
ences and B place trust M2 = 〈b2, d2, u2〉 in agent C. Then A’s
trust in C due to the reference from B can be calculated by the
concatenation M1 ⊗ M2, defined as follows.

DEFINITION 1. Concatenation ⊗. Let M1 =
〈b1, d1, u1〉 and M2 = 〈b2, d2, u2〉 be two belief functions. Define
M = M1 ⊗ M2 = 〈b, d, u〉 = Z(〈b1r2, b1s2〉), where 〈r2, s2〉 =
Z−1(M2).

The concatenation operator discounts B’s trust in C by A’s be-
lief of B. For example, let Alice’s belief in Bob be 0.6, and Bob’s
trust in Charlie be 〈10, 10〉. Then, instead of considering Bob’s ref-
erence directly, Alice discounts Bob’s reference by Alice’s belief.
In other words, Alice’s trust in Charlie would be 〈6, 6〉.
3.2 Aggregation

The aggregation operator combines bodies of evidence. Con-
sider a situation where Alice learns about David separately from
both Bob and Charlie, and has factored in her trust for Bob and
Charlie according to the above concatenation operator. What should
be Alice’s combined trust in David? The answer depends upon the
aggregation of the ratings obtained from two paths.

DEFINITION 2. Aggregation ⊕. Let M1 = 〈b1, d1, u1〉 and
M2 = 〈b2, d2, u2〉 describe ratings computed from two disjoint
paths between the same source and target. Then M1 ⊕ M2 =
Z(Z−1(M1) + Z−1(M2))

The intuition is to combine trust from two different sources by
simply adding the evidence together. For example, Alice learns
about Dave from Bob and Charlie. Alice’s concatenated trusts in
Dave from Bob and Charlie are 〈10, 10〉 and 〈5, 5〉, respectively.
Thus, in total, Alice’s trust in Dave would be 〈15, 15〉.
3.3 Applying Concatenation and Aggregation

Consider agent A with neighbors {B1, . . . , Bm}, whom A trusts
M1,. . . , Mm, respectively. Let Bi’s trust in the target C be M ′

i .
Then we can infer the trust placed by A in C, M as

M = (M1 ⊗ M ′
1) ⊕ (M2 ⊗ M ′

2) ⊕ · · · ⊕ (Mm ⊗ M ′
m)

If a neighbor has not yet computed its trust in C, we can run the
algorithm recursively to obtain the trust from merging and combin-
ing the trust from the neighbor’s neighbors, and so on, until we get
to the witnesses whose trust values in C are computed from their
direct interactions with C. So the trust ratings are merged in a bot-
tom up fashion, from the leaves of the trust network up to its root
A.

3.4 New Operator: Selection
The above approach in essence enumerates all paths from the

originating agent to the target, and then uses the concatenation op-
erator to combine beliefs along each path, and the aggregation op-
erator to combine beliefs from all paths. But there is a problem in
doing so. For example, in Figure 1, witness Wi reports 1 positive
and 1 negative experiences with the target to both B1 and B2. A
should not use the aggregation operator ⊕ to combine the beliefs
from B1 and B2, since their beliefs originate at the same source.

So how may A combine beliefs that come from the same source,
but propagate via different paths? We define the selection operator,
�, to select one out of multiple paths that end at the same point.
This operator selects the path that offers the highest belief. Using
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any other path would lose valuable information. Adding a path
would cause double counting. In Figure 1, we have two paths:
P1 = A → B1 → Wi, and P2 = A → B2 → Wi. Let A’s
trust in B1 and B2 be M1 and M2, respectively, B1 and B2’s trust
in Wi be M ′

1 and M ′
2, respectively, and Wi’s trust in C be MW .

Suppose the trust concatenated along P1 is MW ⊗ M ′
1 ⊗ M1 =

〈0.6, 0.3, 0.1〉, and the trust concatenated along P2 is MW ⊗M ′
2⊗

M2 = 〈0.5, 0.25, 0.25〉. We pick the most reliable path from A to
Wi. Since MW ⊗ M ′

1 ⊗ M1 > MW ⊗ M ′
2 ⊗ M2 (0.6 > 0.5),

so P1 is the most reliable path. So (MW ⊗M ′
1 ⊗M1) � (MW ⊗

M ′
2 ⊗ M2) = MW ⊗ M ′

1 ⊗ M1.

B1

M ′
2

M ′
1⊗

B2

⊗

�

M1

M2

Wi
A C

MW

Figure 1: Selection operator �

DEFINITION 3. Selection operator �. Let P1 and P2 be two
paths from A to W . Let M1 = 〈b1, d1, u1〉 be the trust con-
catenated along P1, M2 = 〈b2, d2, u2〉 be the trust concatenated
along P2. Then if b1 ≥ b2, then M1 � M2 = M1, otherwise
M1 � M2 = M2.

3.5 Applying Concatenation, Aggregation, and
Selection

For a given trust network, to propagate trust of A with C, we
combine beliefs as following. Using selection, we find the best path
(to a fixed depth) from A to each witness. Then we concatenate be-
liefs along this path. The resulting belief is the consolidated belief
supported by that witness. Then we combine all beliefs supported
by all witnesses by using aggregation.

For example, in Figure 2, by applying all three operators, the
propagated trust is M = ((M1 ⊗ M ′

1) � (M2 ⊗ M ′
2) � (M3 ⊗

M ′
3)) ⊗ M5) ⊕ (M4 ⊗ M ′

4).
To illustrate the double counting problem without selection in

Figure 2, let M1⊗M ′
1 = 〈0.8, 0.1, 0.1〉, M2⊗M ′

2 = 〈0.6, 0.2, 0.2〉,
M3⊗M ′

3 = 〈0.6, 0.3, 0.1〉, Z−1(M5) = 〈50, 5〉, M4 = 〈0.9, 0.05,
0.05〉, and Z−1(M ′

4) = 〈20, 0〉. The actual trust of C is M , where
Z−1(M) = Z−1(M5) ⊕ Z−1(M ′

4) = 〈70, 5〉. However, by
applying only concatenation and aggregation, the estimated trust
Z−1(M) = Z−1(((M1 ⊗ M ′

1) ⊕ (M2 ⊗ M ′
2) ⊕ (M3 ⊗ M ′

3)) ⊗
M5) ⊕ (M4 ⊗ M ′

4)) = 〈118, 10〉, which double-counts M5. This
shows that multiple paths via the same witness can lead to double-
counting. Double counting is especially obvious when the aggre-
gated belief of the paths from the source to a witness is greater than
one, but can occur otherwise too.

4. PROPERTIES
To propagate trust meaningfully and efficiently, we desire certain

properties of the three operators. CertProp follows W&S’s [18] ag-
gregation (based on Jøsang [8] but with a different Z), but different
concatenation and selection. W&S showed that aggregation is asso-
ciative and commutative. Now we establish some useful properties
of concatenation and selection.

THEOREM 1. Selection � is commutative and associative.

B1

M ′
2

M ′
1⊗

B2

⊗

�
M1

M2A C⊗
B3

M3

M ′
3

W1

W2

M4 M ′
4

⊕

M5

Figure 2: Trust propagation in a social network

PROOF. Below, let Mi = 〈bi, di, ui〉. To show M1�M2 =
M2�M1, suppose M1�M2 = M1, which means b1 > b2. Thus,
M2�M1 = M1. And, similarly for M2.

To show M1�(M2�M3) = (M1�M2)� M3:

Case 1 : Suppose b1 is larger than b2 and b3. If b2 ≥ b3. Then
M1 � (M2 � M3) = M1 = M1 � M3 = (M1 � M2) � M3.
If b2 < b3, then M1 � (M2 � M3) = M1 � M3 = M1 =
M1 � M3 = (M1 � M2) � M3.

Case 2 : Suppose b2 is larger than b1 and b3. Then M1 � (M2 � M3)
= M1 � M2 = M2 = M2 � M3 = (M1 � M2) � M3.

Case 3 : Suppose b3 is larger than b1 and b2. Then M1 � (M2 � M3)
= M1 � M3 = M3 = (M1 � M2) � M3.

Thus, M1 � (M2 � M3) = (M1 � M2) � M3.

THEOREM 2. Concatenation ⊗ distributes over aggregation ⊕.

PROOF. We need to prove that M1 ⊗ (M2 ⊕ M3) = (M1 ⊗
M2) ⊕ (M1 ⊗ M3). Assume the equivalent evidence correspond-
ing to M2 and M3 is 〈r2, s2〉 and 〈r3, s3〉, respectively. Let M1 =
〈b1, d1, u1〉. Then the equivalent evidence corresponding to M1 ⊗
(M2 ⊕ M3) is 〈b1(r2 + r3), b1(s2 + s3)〉. The evidence cor-
responding to (M1 ⊗ M2) ⊕ (M1 ⊗ M3) is 〈b1(r2), b1(s2)〉 ⊕
〈b1(r3), b1(s3)〉 = 〈b1(r2 + r3), b1(s2 + s3)〉, which completes
the proof.

CONJECTURE 1. Concatenation ⊗ distributes over selection �.

5. EVALUATING TRUST PROPAGATION
It is difficult to evaluate an approach such as ours on real data be-

cause large networks of agents interacting with one another do not
yet exist. For this reason, we adapt two datasets of social networks,
namely, FilmTrust and a PGP key ring. Each dataset is naturally
modeled as a weighted directed graph.

Some trust propagation models, e.g., [21], distinguish trust in
expertise (i.e., ability of providing services) from trust in sociability
(i.e., ability of providing referrals). Unfortunately, in datasets like
FilmTrust and PGP, there is no such differentiation, although our
model can accommodate this distinction.

We use the following strategy for evaluating a trust propagation
algorithm over a graph. Typical networks carry a lot of redundancy,
which we can exploit to evaluate the effectiveness of an approach
for propagation [10]. The information associated with any specific
edge may be induced from the other relevant edges, namely, those
that fall on a sufficiently small path from the source to the target (of
the given edge).
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Specifically, let there be an edge from agent A to agent B of
weight dAB (denoting actual trust). We remove this edge tem-
porarily and estimate the propagated trust iAB between A and B
based on paths from A to B. The difference between dAB and
iAB reflects how effective an algorithm is at inferring the relation-
ship between two agents. In essence, the elided direct relationship
of weight dAB yields the ground truth with which to evaluate the
propagation.

5.1 Accuracy Metrics
To compare the propagated trust with the actual trust (the weight

of the direct edge), we introduce two metrics: P-error and B-error,
which are defined in evidence and belief space, respectively. Let
M1 = 〈b1, d1, u1〉, where Z−1(M1) = 〈r1, s1〉, and M2 =
〈b2, d2, u2〉, where Z−1(M2) = 〈r2, s2〉. The P-error between
M1 and M2 is |α1 − α2|, where (as above) αi = ri

ri+si
. The B-

error of M1 and M2 is defined as |b1 − b2|. Importantly P-error
provides a metric for comparing our approach with single-valued
trust representations like TidalTrust [10], whereas B-error yields
more accurate comparison because it considers the certainty of the
trust ratings. B-error is more sensitive because it is low if either (a)
two certainties are close, or (b) P-error is low.

5.2 Trust Models and Search Strategies
Note that we find paths within a fixed length for the following

reasons. First, it is computationally expensive to find all paths in
a huge social graph. Besides, shorter paths yield better accuracy
in general because longer chains are weaker [10, 22]. However, a
trade-off still exists. Deeper search may yield more evidence, but
takes more time. Shallow search may give us accurate evidence
quickly, but may not find any path. Thus, we propose three strate-
gies. The shortest strategy first finds the shortest path from A to
B, and then find all paths within that length. The fixed strategy
searches all paths within a specified depth. In our experiments, we
set this depth to seven to make sure we find at least one path for
all connected pairs in the dataset. The selection strategy yields the
most trusted paths to each witness found by fixed. We compare our
approach, CertProp, to W&S [18]. To show the influence of the
trust models and the strategies, we define three variants for both
W&S and CertProp, which Table 1 summarizes.

Model Name ⊕ ⊗ � Path

W&S (shortest) W&S No Shortest
W&S (fixed) W&S W&S No Fixed
W&S (selection) W&S Yes Fixed

CertProp (shortest) New No Shortest
CertProp (fixed) W&S New No Fixed
CertProp (selection) New Yes Fixed

Table 1: Variants of W&S and CertProp studied here

5.3 From Opinions to Evidence
Using the available social network datasets poses two challenges.

One, the weights used in these networks are integers whereas our
approach needs two reals, namely, 〈b, d, u〉 (with b + d + u = 1).
Two, the weights are subjective opinions and not evidence. Ac-
cordingly we propose heuristics for mapping opinions to evidence,
so they become amenable to our approach. We propose two ap-
proaches to transform opinions into evidence: (1) linear and (2)
Weber-Fechner. We consider subjective ratings drawn from a scale
such as 1 to 10 (FilmTrust), 1 to 4 (PGP), and so on.

The idea of the linear transformation is normalization. In our
representation, the ratings at the end points (intuitively, reflecting
unanimity of various considerations) correspond to a lower uncer-
tainty u than those in the middle. Further, the belief b derived from
a rating of 10 should be the highest and that derived from a rating
of 1 the lowest. Therefore, we translate a FilmTrust rating to our
trust value 〈r, s〉 by simply interpreting the single number as the
number of positive experiences r relative to a fixed total number of
experiences of 10. For example, we translate an opinion rating of 4
to evidence 〈r, s〉 = 〈4, 6〉. Likewise, we translate a PGP rating of
3 to 〈3, 1〉. Although this approach is simplistic, it provides us the
metrics to compare with other trust propagation methods.

The Weber-Fechner transformation satisfies two observations. It
is based on the Weber-Fechner “law” [2], which says the relation-
ship between stimulus and perception is logarithmic. If a stimulus
(i.e., good experience) is tripled in strength, the corresponding per-
ception (i.e., opinion ratings) will be three steps above the original
value. For example, suppose agent A has 10 good transactions with
agent B, and A’s opinion rating about B is three. A’s opinion rat-
ing about B will be four if A has 20 more good transactions. Sec-
ond, as always, in our approach, the certainty of the object rating
corresponding to the average opinion should be the lowest. Based
on these observations, we define a transformation function to trans-
form opinions into evidence.

DEFINITION 4. Weber-Fechner Transformation. Suppose Σ is
the set of normalized opinion ratings. Let A, P , U be the average,
the most popular, and the least popular opinion in Σ, respectively.
Then W (σ ∈ Σ) = 〈kσ/A, k〉 is the transformation from opinions

into evidence, where k = ln
“

#P−#U
|P−U| + e

”
, #P and #U are the

counts of P and U in the given dataset.

The intuition behind k is to capture the slope between the num-
bers of the most and least popular opinions. If k is larger, the dif-
ference of the probabilities between the transformed ratings corre-
sponding to two successive opinions will be bigger. For example,
the number of the most and least popular opinions in FilmTrust and
PGP are 199, 308, and 202, respectively, which means it requires
more positive evidence to increase the opinions by one in PGP than
it does in FilmTrust. We add a correction e to make sure k is greater
than one. The exponent σ/A captures the logarithmic relationship
between evidence and ratings.

For example, in the FilmTrust dataset, the average of normalized
opinions is 0.68, the most and least popular normalized opinions
are 0.7 and 0.2, which have 228 and 26 counts, respectively. Then,
W (0.3) = 〈2.21, 6.01〉, and W (0.7) = 〈6.33, 6.01〉.

Figure 3 compares the certainties of linear and Weber-Fechner
transformed ratings in the FilmTrust and PGP dataset. With Weber-
Fechner, the average rating has the lowest certainty, but not with
linear (in PGP). In FilmTrust, the average normalized rating is
close to 0.7, while the average rating in the PGP dataset is close
to 1, which is the default value in PGP setting. Sections 5.4 and 5.5
show how these transformations affect the results.

5.4 FilmTrust
Our first evaluation is based on FilmTrust [10, 11], a small social

network of film buffs. In this dataset, the 538 vertices represent
agents (users) and the 1,234 directed edges represent their trust re-
lationships with other users. The weight of an edge is an integer in
[1, 10], which reflects the strength of the source agent’s qualitative
rating or opinion of the target agent.

Katz and Golbeck’s [10] algorithm, TidalTrust, collects trust data
from all referral paths with the shortest length from a source to a
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Figure 3: Rating distributions and associated certainties

sink. It selects referral paths with strength above a threshold and
uses them to compute the overall trust value.

Kuter and Golbeck’s [11] trust inference model, Sunny, provides
a confidence measurement based on probabilistic sampling. Sunny
exhaustively finds all possible paths from a source to a sink. The
confidence measurements in Sunny, W&S, and CertProp, reduce
the influence of path length—longer paths contribute less to the
overall result than shorter ones. But considering additional paths
provides access to more opinions, and can yield more accurate in-
ference.

Figure 4 shows the paths found by the fixed variant, which ex-
haustively searches all paths within the fixed length three from the
source to a sink (diamond), after the directed edge (dashed arrow) is
removed. In this case, we are left with two paths of length two and
13 paths of length three. The shortest variant only finds the two
paths in the shortest length, which is two. Conversely, the fixed
strategy considers all 15 paths of up to a fixed length of three. Our
experiments below show how search strategies affect the accuracy
of the propagation.

Figure 4: Paths of length less than or equal to three from a

source (solid rectangle) to a sink

Figure 5 shows the average P-errors of TidalTrust, Sunny, W&S,
and CertProp. The shortest variant has similar performance to
Sunny, which outperforms TidalTrust. The fixed variant has the
best performance with both W&S and CertProp.

To provide more insightful comparisons among the variants of
W&S and CertProp, Figure 6 shows both P-error and B-error with
different search strategies. We draw three conclusions. First, the
fixed variant yields higher certainty (reflecting the additional evi-

Figure 5: Average P-errors evaluated on FilmTrust

dence found) than the shortest, which indicates the former provides
better estimates by considering more evidence (paths). Second, al-
though CertProp and W&S have similar P-errors in both linear and
Weber-Fechner cases, CertProp has a lower B-error (more accu-
rate). This is because CertProp has better concatenation operator,
which we further discuss in Section 5.6. Third, both CertProp and
W&S yield better performance in the Weber-Fechner case. This
shows that the Weber-Fechner transformation successfully reduces
the effect of subjectivity in FilmTrust. The subjectivity of the opin-
ions decreases the accuracy of CertProp and W&S.

Figure 6: Average P-errors and B-errors with different search

strategies, evaluated on FilmTrust with linear and Weber-
Fechner transformations

To show more evidence of how the amount of evidence affects
prediction accuracy, we use random-walk sampling [12] to generate
five 25% samples. The sampling method preserves the statistical
properties, such as degree distribution, clustering coefficient, and
so on, with a moderate sampling size of 15% to 25%. As Figure 7
shows, the confidence of the prediction increases with the number
of paths found. Also the average ratings, the depth of the paths
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found, and the P-errors from the sample data are similar to the re-
sults from the whole FilmTrust data. We apply the same sampling
method in Section 5.5 to reduce the size of the PGP dataset.

Figure 7: The results of CertProp (fixed) on the sampling data,

showing the certainty increases with the number of the paths

found, while the average rating, the depth of paths found, and

P-error are preserved by the random-walk sampling method

5.5 PGP Web of Trust
The web of trust is a concept used in Pretty Good Privacy (PGP).

The main idea is that instead of relying on centralized certificate
authorities, the web of trust establishes a decentralized trust model
of public keys, in order to verify the authenticity of the bindings
between users and their public keys.

For example, user C receives a digitally signed email from user
S. C needs S’s public key to verify the digital signature. However,
a fake public key can be easily created with S’s name. To verify
the authenticity of the public key, one simple way is to find another
trustworthy user who can confirm the public key belongs to S. In
other words, the authenticity of the public key of S can be verified
if C can find a user who signs the public key of S. This is called a
signature relation. The web of trust is a directed graph represent-
ing the signature relation among users. Each vertex represents a
user, and an edge from user A to user B means the public key of
B is signed by user A. Besides, an integer trust value in [1, 4] is
associated with each edge to indicate the strength of the relation.
To verify the authenticity of S, C needs to find a path (a confirma-
tion chain of signature relations) to reach S. There could be more
than one path between two users. The more disjoint paths exist the
harder it is to fake the confirmation chain.

We repeat the experiment of Section 5.4 on the PGP dataset. The
web of trust data is collected from the PGP server snapshot [1] on
June 5, 2008. It consists of 39, 246 vertices and 317, 979 edges.
The average distance (i.e., the shortest path) of all vertex pairs is
around 6. We sample the graph to scale down the size of the data
using random-walk sampling [12].

We compare CertProp with W&S and a trust propagation ap-
proach, Naive. In Naive trust propagation, concatenation is defined
as the multiplication of the probabilities α = r

r+s
. Aggregation is

defined by the average of the probabilities. There is no certainty
concept in Naive.

Figure 8 compares CertProp with W&S and Naive. Just as for
FilmTrust, CertProp has similar performance with respect to P-
errors, but outperforms W&S in B-errors. Naive is the worst among

the three approaches. Also, in Weber-Fechner case, both Cert-
Prop and W&S improve, but the concatenation operator of Cert-
Prop yields greater improvement than W&S.

Figure 8: Average P-errors and B-errors of W&S, Naive, and

CertProp, with different search strategies, evaluated on PGP

with linear and Weber-Fechner transformations

5.6 Discussion
We can draw the following conclusions from the evaluation in

Sections 5.4 and 5.5.

Overall Performance of CertProp and W&S CertProp (fixed ) is
the best trust propagation approach in both datasets. In gen-
eral, CertProp is more accurate and efficient than W&S in
terms of B-error, although they have similar P-errors. As
Section 5.1 argues, B-error estimates the accuracy of probability-
certainty trust better than P-error. Besides, CertProp and
W&S both have smaller P-errors than Sunny and TidalTrust
in FilmTrust, and Naive in PGP.

Performance of Search Strategies The fixed variant is generally
more accurate than shortest, whereas the selection variant is
outperformed by fixed in FilmTrust but has similar perfor-
mance as fixed in PGP. In most cases, selection does not
perform well because it ignores too much evidence.

Performance of ⊗ in CertProp and W&S The main difference be-
tween CertProp and W&S is in their concatenation operators.
CertProp concatenation discounts the evidence of the refer-
ral by the belief of the referrer, whereas W&S concatenation
discounts the belief of the referral by the belief of the refer-
rer. The certainty of concatenated trust in CertProp is gener-
ally higher than in W&S, because the belief can be viewed
as certainty-discounted evidence. The results in Sections 5.4
and 5.5 indicate the concatenation in CertProp has better ac-
curacy than W&S.

Further, CertProp concatenation works evidence space. In
other words, it requires no Z−1 mapping [18] (as described
in Section 2). To show how Z−1 mapping affects the effi-
ciency, we compute the concatenation of two trust ratings,
M1 and M2, where Z−1(M1) = 〈r1, s1〉 and Z−1(M2) =
〈r2, s2〉. Each of r1, s1, r2, s2 is an integer ranging over

6
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[1, 100]. We consider all combinations represented by the
Cartesian product r1 × s1 × r2 × s2. Thus, there are 108

combinations. Generally, the Z−1 mapping can be approxi-
mated using binary search or Newton’s method [19]. Instead
of computing it in real-time, we build a look-up table in ad-
vance. Despite the speed up of Z−1, we find that each each
CertProp concatenation takes on average 0.12 milliseconds,
whereas W&S takes 133.37 milliseconds.1

Performance of � in CertProp and W&S The selection opera-
tor � does not help in either W&S or CertProp. We ob-
served that, in datasets like FilmTrust, opinions are assigned
by users, who trust others not based on evidence, but primar-
ily based on subjective impressions. For example, A may
give B a high opinion just because everybody trusts B. Se-
lection is helpful only in evidence-based datasets where dou-
ble counting is undesirable. In other cases, selection is overly
cautious and ignores too much evidence when a witness can
be reached by many paths.

However, the selection result verifies the observation made
by Katz and Golbeck [10]—shorter paths have more accu-
rate trust inference for a fixed trust rating. As Figure 9 shows,
in FilmTrust, shortest paths tend to be more trustworthy be-
cause they are selected more by the selection � operator. For
example, over 90% of paths of length of two are selected.
The PGP evaluation yields a similar result.

Figure 9: The distribution of the length of the paths found by

CertProp (selection). Shorter paths tend to be more trustwor-

thy and hence are selected more by selection.

Performance of Linear and Weber-Fechner Transformation Our
evaluation shows that, for opinion networks, evidence-based
trust propagation approaches, like CertProp and W&S, are
more accurate in Weber-Fechner transformed graphs than
linear transformed ones. This result verifies our assumption
that the opinions in the datasets are subjective. Also it in-
dicates Weber-Fechner transformation can reduce such sub-
jectivity, whereas linear transformation fails to reduce the
subjective because it cannot adapt different properties of the
datasets.

1The experiment is conducted on MacBook Pro with 2.16 GHz
Intel Core 2 Duo, and 2 GB 667 MHz DDR2 SDRAM, in Java
Run-time Environment 5.0.

Selection based on Certainty vs. Selection based on Belief Note
that, to prevent from double counting, we can also consider
selection based on certainty, or c-selection, which means, in-
stead of choosing the path with the most belief b, we choose
the path with the most certainty c. However, the result shows,
c-selection performs worse than selection with both P-error
and B-error, especially B-error. For example, in FilmTrust
with linear transformation, CertProp (c-selection) has P-error
0.1780 and B-error 0.347, whereas CertProp (selection) has
0.1783 and 0.350. This is as a result of lack of evidence.
Although c-selection chooses the most certain path, the cho-
sen path may be either with the most disbelief d or the most
belief b. The former case makes the estimated trust less ev-
idential, in other words, with a small belief b. Conversely,
selection makes sure the chosen path is the latter case, with
the most belief rather than disbelief.

6. LITERATURE
Trust models are widely studied in various domains. Trust prop-

agation methods can be categorized as the models that consider
witness information sources [17], or retrieve and aggregate ratings
from a social network [15]. Here, we focus on trust propagation
approaches not covered in the above surveys.

Richardson et al. [16] discuss an abstract framework for trust
propagation. Each user maintains trust in a small number of other
users. A user’s trust in any other user can be computed by using the
existing web of trust recursively. Richardson et al. first enumerate
all paths between the user and every other user who has a local be-
lief in a given statement. Next they calculate the belief associated
with each path by using a concatenation operator along each path,
and combine the beliefs associated with all paths using a prede-
fined aggregation operator. However, they do not consider double
counting. Wang and Singh [18, 19] present path algebra for trust
propagation, and define aggregation and concatenation. We use
their aggregation but our concatenation operator is different (and
faster) than theirs without loss of accuracy. We also introduce a
new selection operator to avoid possible double counting in trust
networks.

Yu and Singh [20, 21] study distributed reputation management
in a social network whose member agents cooperate with each other
to find the trustworthiness of other agents. To find the trustwor-
thiness of a service provider, an agent uses the referral network
to find witnesses, and combines the beliefs of those witnesses re-
garding the service provider. Yu and Singh’s approach is based on
the Dempster-Shafer theory of evidence. It treats a service with
medium quality as of unknown quality, not as a known medium
quality. More importantly, it does not completely address double
counting in that multiple paths through the same agent are treated
as if they were independent. Although the approach identifies wit-
nesses who have direct experience, so there is no double counting
at that level.

Gray et al. [6] address trust propagation in mobile ad hoc net-
works. They calculate concatenation as the average of trust of each
edge along the referral path, where the trust of edges is discounted
by the depth in the referral path. Trust from different paths is aggre-
gated by choosing the most trusted of the available paths. Quercia
et al. [14] also propagate trust in mobile network context. Based
on the web of trust, they build relationship graphs where nodes
are relationships. Two related nodes are linked if they are either
from the same rater or rating the same person. At the beginning,
some of nodes are rated at the first place. Then trust is propa-
gated from rated nodes to unrated ones by computing a predictive
function. However, the number of relationships in real-world net-
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works is much larger than the number of nodes. For example, there
are 1, 234 edges (538 nodes) in FilmTrust, and 317, 979 edges
(39, 246 nodes) in PGP. Propagating trust in the corresponding re-
lationship graphs would be more computationally expensive. The
operators for propagating trust in our approach take advantage of
well-defined certainty and belief of trust with proved mathematical
properties. Also, our approach provides accurate propagated trust
with a small fixed propagation depth.

Trust management in peer-to-peer systems has been widely stud-
ied [9, 23]. Spectral decomposition is used on the adjacency matrix
of the network graph to estimate global reputation, which is also
called the global group trust metric [24]. Guha et al. [7] asso-
ciate trust relations to matrix operations. For example, the com-
mutativity of trust is associated to matrix transpose, while direct
propagation is associated to matrix multiplication. Different from
global group methods, our approach models trust from a personal
perspective. Propagated trust takes into account personal bias. Be-
sides, matrix approaches require several iterations to converge.

Advogate [13] and Appleseed [24] are two local group trust met-
rics, which propagate global trust only on the local subgraph. Ad-
vogate applies network flow on a modified graph, where capacities
are assigned to edges based on the depth in the referral path. The
deeper the edge is the less capacity it has. Conversely, Appleseed
adopts spreading activation. It spreads energy across the graph,
and, when propagating through a node, divides energy among suc-
cessors based on the edge weights. The idea of Appleseed is simi-
lar to spectral decomposition and requires several iterations to con-
verge. CertProp propagates trust in local subgraphs. It provides
local trust, rather than group-level (local group) or global trust. In
other words, the propagated trust of Alice from Bob is different
from the trust of Alice from Charlie.

7. CONCLUSION
Trust propagation is a natural concept in settings where agents

must cooperate to identify the most trustworthy parties with whom
to deal. Doing so helps the agents leverage each other’s knowl-
edge, benefiting the most from each other’s efforts in establishing
and evaluating trust relationships, and thereby increasing the social
good.

Our evidence-based approach, CertProp, provides efficient oper-
ators, concatenation, aggregation, and selection, that can propagate
trust accurately. These operators satisfy useful algebraic properties.

Besides, we motivate a new way to transform subjective opinions
into objective evidence based on Weber-Fechner law. This trans-
formation also follows the idea that the average opinion yields the
lower certainty of transformed trust. It helps reduce the subjectiv-
ity in opinion-based datasets so that the evidence-based approaches
like CertProp and W&S can apply.

Our evaluation over two network datasets shows that CertProp
provides accurate propagated trust. It indicates that the Weber-
Fechner transformation successfully reduces the subjectivity in two
quite different datasets. However, although the selection operator
has solid theoretical basis, the subjective datasets fail to show the
effectiveness of it. Also, the selection operator ignores too much
evidence while it reduces double-counting.

In the future, we would like to study additional trust propagation
datasets, for example, Epinions [7] and Advogate [13, 24]. Be-
sides, we would like to enhance the capability of attack-resistance
and rumor-resistance. Finally, we will refine the selection operator
in order to find balance between gathering evidence and reducing
double-counting.
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